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Abstract

In this paper, a scaling exponent based approach is proposed to determine
the state of chaotic circuits, and the scaling exponent is calculated using de-
trended fluctuation analysis (DFA). The corresponding detector is designed
using the fact that the scaling exponent changes for various states of chaotic
circuits. Simulation examples in this paper are performed for the Chua’s
circuit and other chaotic systems and compared with the state-of-the-art in
the field. The proposed detector outperforms existing techniques in ability
to distinguish the chaotic and periodic states in the circuits for relatively
high noise.

Keywords: Chaos detection, Scaling exponent, Detrended fluctuation
analysis, Peak intervals time series.

1. Introduction

Chaotic nonlinear oscillators belong to a group of systems that can ex-
hibit chaotic behavior [1]-[4]. Estimating a current state of chaotic systems
based on a available time series is an active research area.

In the past decades, there are classical works reporting how to detect
chaos from times series, such as Lyapunov methods [5], [6], the Grassberger-
Procaccia algorithm (GPA) for estimation of the correlation dimension [7],
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the Kolmogorov entropy [8], etc. These methods are based on quantification
of the nearest neighbors in the phase space. Therefore, these techniques are
computationally expensive.

The scope of this paper is a subset of the more general topic of de-
tecting dynamic changes and weak transitions in signal dynamics. A num-
ber of interesting methods have been proposed to detect dynamic changes.
Among others, methods using recurrence dynamic systems analyzing a num-
ber of visits to small regions in the phase space such as: recurrence plots
[9], recurrence quantification analysis [10], recurrence time statistics based
approaches [11], [12]. Again, the majority of these techniques analyzes the
nearest neighbor in the phase space. The permutation entropy was proposed
at beginning of the last decade as an interesting concept for measuring com-
plexity of time series [13]. This concept is simple and leads to efficient
evaluation [14].

In other direction, techniques based on the time-frequency (TF) sig-
nal analysis have been proposed in [15]. Namely, the period-doubling, torus
breakdown and intermittency routes to chaos have well-defined spectral rep-
resentations and it is possible to distinguish between chaotic and periodic
system states in this domain. For example, a detector of chaotic states
in nonlinear oscillatory circuits based on the short-time Fourier transform
(STFT) has been proposed in [15]. This detector has ability to distinguish
chaotic and noise-contaminated samples when moderate level of noise is
present. The accuracy of such a detector with respect to the window width
used for the TF representation is analyzed in [16], resulting in the multi-
ple STFT-based approach with a higher accuracy than the single window
counterpart. However, the STFT-based detectors do not always properly
differentiate chaos and noise for low signal-to-noise ratio (SNR) values. This
fact reduces the application of the STFT-based detectors on chaotic signals
for high SNR values.

The next approach is based on the concept of scale. The concept of scale
is suitable for the analysis of signals from complex dynamic systems [17]-[20].
Specifically, the detrended fluctuation analysis (DFA) [21] is used in this pa-
per. The DFA is an efficient scaling method used for detecting correlations
in noisy, nonstationary time series [21]-[23]. It has been used widely [24],
[25]. Chaotic signals seem random and unpredictable and have statistical
properties similar to random processes [26]. Therefore, the DFA is suitable
for the analysis of such signals [27], [28] in order to detect the state of chaotic
oscillators. Furthermore, the DFA has been also used in the analysis of com-
plex, medical signals such as heartbeat time series [29] and stride interval
dynamics [30]. The idea of analyzing intervals between extremum points



(or interbeat) also found its applications in other physiological signals such
as those coming from brain [31] and muscle activities [32]. These results
motivated us to consider complex dynamics of sequence of intervals between
extremum points coming from signals associated with chaotic oscillatory
circuits using the DFA. Therefore, we propose an algorithm based on the
analysis of scaling exponents, calculated by DFA, associated with time series
consisting of intervals between extrema in the original signal. Our analysis
shows that the scaling exponent of extrema points intervals sequences sig-
nificantly differs for periodic and chaotic signals. A state of the system is
estimated without a priori knowledge of the structure and parameters of the
oscillator. Simulation examples are done for the well-examined Chua’s os-
cillator and other chaotic systems. The proposed algorithm has reasonable
complexity and it requires short interval for evaluation measure, making it
suitable for implementation in a real time. Also, the proposed algorithm is
robust to significantly higher noise levels than the existing techniques. Con-
sidering shortcomings of existing techniques for the detection of chaos (high
complexity of computation, inapplicability to a wide class of systems, the un-
reliability for short noisy sequences), the problem of detection is considered
open and any new contribution to this challenging problem is important.
According to the presented results, the proposed DFA-based approach is a
valuable tool for the considered application.

The paper is organized as follows. In Section 2, procedure of estimation
of scaling exponents is described in details and the detector of chaos in
oscillatory circuits based on the DFA is proposed. The DFA is applied to
typical periodic and chaotic signals from Chua’s oscillator and rationale for
selecting threshold and algorithm setup is described in Section 3. Simulation
results and detailed analysis of noise influence on the accuracy of the detector
as well as comparison with permutation entropy are given in Section 4.
Concluding comments are given in Section 5.

2. Detecting chaos using scaling exponents

In this section, we propose an algorithm for detection of chaotic episodes
based on the scaling exponents. It should be mentioned that the DFA is
not directly applicable to the chaotic signals due to the so-called crossover
effects. Therefore, the scaling exponents are obtained for the time series
representing intervals between local extremum points calculated for signals
from consider circuits. This is explained in details in the next section.

The steps of the proposed algorithm are as follows:



. Obtain local extremum points:
S={n|lzr(n)>z(n—-1)Az(n)>z(n+1)V

[x(n)<z(n—1)Az(n)<z(n+1)]}. (1)

. Create ordered sequence of elements from S:
P(kyeS, P(k)<P(k+1). (2)
Corresponding time series of intervals between extremum points is:
Pk)=P(k+1)—P(k). (3)

. This sequence is divided in overlapping blocks centered around con-
sidered instant:

y(i)—P<k+i—g>,ie[1,N], (@)

where N is the length of the window. Index k is related to the time
instant corresponding to local extrema point.
. Calculate the scaling exponent using DFA.
To estimate the scaling exponent of a time series y (i), i = 1, ..., N, we
take the following steps:
N
(a) The time series mean is computed as § = % >y (j). An inte-
j=1
grated time series z (i), i = 1, ..., N is obtained as:

r(i)=>Y y(§)—gi=1,..,N. (5)

(b) The integrated series x (i) is then divided into non-overlapping
segments (windows) of equal size n. A polynomial function of
degree [, marked by x,, (i;7n), is used to interpolate the sequence
in each segment. The interpolating curve z,, (i;n) represents
the local trend in each segment. Linear interpolation, [ = 1, is
commonly used.

(¢) The fluctuation sequence, or the difference between the integrated
sequence and the local polynomial trend is calculated:

zi(isn) =2z (i) —x;(4;n),i=1,...,N. (6)



(d) The root mean square (RMS) values of fluctuations is calculated
for each segment. That is fluctuation functions labeled as Fj (n):

1 N
Fi(n)= |5 2 (n)?*. (7)
j=1

(e) This procedure is repeated for a wide range of segment length n
(Nmin = 5 and npax = % [21]). Note that the wider segments
cause smaller number of sliding windows following with the large
the RMS fluctuation around the regression line.

(f) Finally, if we assume that the signal satisfies a scaling law, it is
noted that fluctuation function satisfies a power law in relation
to the segment length:

Fi(n) ocn®, (8)

where the scaling exponent o can be computed as the slope of the
plot log (F; (n)) versus log (n). The state of system is estimated
based on the scaling exponents . We perform the linear inter-
polation of the plot log (F] (n)) versus log(n) (in our example for
n €[5,4]) in order to estimate . This slope is used as a measure
for chaos detection.

5. For the time instant ¢, set m(t) = a.
6. Compare m (t) to a threshold C:

m(t) > C, oscillatory circuits in instant ¢
is in chaotic regime,
m(t) < C, oscillatory circuits in instant ¢

is in periodic regime. 9)

m (t) is higher for the chaotic than for the periodic regime. In other
words, if m () is above some properly selected threshold, than the
considered signal is chaotic. Otherwise, if m (¢) is below the threshold,
we can conclude that the signal represents a periodic regime. In this
process, determining a proper value of the threshold is crucial. In the
next section, we will describe how to choose a proper value of threshold
for the Chua’s circuits.
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Figure 1: a) Chua’s circuit; b) nonlinear v-i characteristic of Chua’s diode.

3. Algorithm setup

Here, the threshold selection procedure is explained on the simple the
Chua’s oscillator, shown in Fig.la. It is the simplest electronic circuit that
meets all conditions for producing chaotic behavior [33]. The characteristics
of a nonlinear resistor called Chua’s diode is shown in Fig.1b. The circuit
can be described by a set of three autonomous state equations:

dv 1
d_tl e (G (v2 —v1) — f (v1)]
d 1 .
% = @[G(’Ul —UQ)+13]
di 1 .
f = 7 (—v2 = Rois), (10)

where G = 1/R and f (v;) is the piece-wise linear v — i characteristic of the
Chua’s diode, given by:

£ (on) = Gyon+ 5 (Ga— Go) (fon+ Bl — lon — BI), (1)

where E is the breakpoint voltage of Chua’s diode.

By selecting various values of parameters, this oscillator can exhibit dif-
ferent types of behavior in a steady state (the equilibrium point, periodic
motion, quasiperiodic motion and chaos). This circuit can also become
chaotic in three different ways: period-doubling, torus breakdown and inter-
mittency routes to chaos. That transition or route to chaos is achieved by
varying one of the parameters of the circuit, while others remain constant.
Table 1 shows the constant and varying parameters of Chua’s circuit that



Routes to | Fixed parame- | Varying parameter
chaos ters
Period-doubling | L = 18mH, G linearly increases from
C1 = 10nF, G = 530uS to G = 565uS
C5 = 100nkF, and after that decreases
Gy = —T757.576uS, | toward initial value.
Gp = —409.091uS,
E = 1V, Ry =
12.502
Torus  break- | L = 7.682mH, C1 linearly decreases from
down Cy = 0.3606uF, C1 = 0.0297uF to
Gq = 0.599mS, Ci1 = 0.008uF and after
Gy = 0.77mS that increases toward ini-
EF = 1V, Ry = | tial value.
13.49),
G = —0.TmS
Intermittency G, = —0.756mS, C1 linearly varies from
Gp = —0.409mS, C1 = 19.28nF to
L = 37.56mH, C1 = 19.246nF.
Cy = 215nF,
Ry =30Q,FE =1V,
G = 0.648mS

Table 1: Routes to chaos for Chua’s circuit.

we used in our simulations for three mentioned routes to chaos [33], [34],
[35].

The DFA is applied on the signal from the Chua’s circuits for quan-
tification of the circuit state based on obtained scaling exponents. Scaling
exponents for signal from the Chua’s circuit are given in Fig. 2. Solid line
represents the DFA for the chaotic signal while dashed line corresponds to
the periodic signal. Obviously, the fluctuation function cannot be described
by the simple rule since the unique value of o cannot be determined for en-
tire function. Namely, there is a crossover point in the fluctuation function
where the scaling parameter changes value. From Fig. 2 it can be concluded
that the main difference between periodic and chaotic regimes is in different
exponents after the crossover point. The slope of the curve for the peri-
odic regime is approximately zero while for the chaotic regime it has slope
different from zero.
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Figure 2: Result of DFA: periodic signal - dotted line, chaotic signal - solid line.

Narrow windows (below crossover point) exhibits similar behavior for
chaotic and periodic regimes. Namely, periodic signal in window that is
shorter than signal period has pseudorandom appearance and the window
lengths below the crossover point are not useful in detection. After the
crossover point the slope of the fluctuation function for periodic regime is
approximately zero while for chaotic regime it is different from zero. Design
of the detector in this case would be rather complicated since it requires es-
timation of the crossover point that is different for various routes to chaos,
chaotic systems and also it depends on the sampling rate (smaller sampling
rate means larger number of samples and larger value of the crossover point).
Therefore, we decided to use the interval between extrema points in original
signal in the DFA analysis (1)-(3). Firstly, these signals are less complex
than corresponding outputs of the oscillators. For non-noisy monocompo-
nent periodic signal this series is constant while for multicomponent it has
several values with periodic appearance. For circuits in our analysis (Chua’s
circuit, Colpitts oscillator, Duffing oscillator, Bonhoeffer-van der Pol oscilla-
tor, Lorenz and Rossler chaotic system) this period is smaller than 5 samples.
It means that n corresponding to the crossover in the DFA is less than 5
meaning that the slope of the DFA should be estimated for n > 5. For
periodic regime this slope is equal to zero while for the chaotic region the
peak interval time series produces irregular sequence giving non-zero slope
for n > 5. Then the proposed detector will be based on the DFA analysis
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Figure 3: Result of DFA: periodic signal - solid line, chaotic signals - dashed lines.

of the peak interval time series and slope of the corresponding fluctuation
function. Scaling exponents for the peak intervals time series derived from
signals from the Chua’s oscillators are shown in Fig. 3. The solid line rep-
resents the fluctuation function for the periodic signal. The dashed lines
correspond to the fluctuation functions for the chaotic signals from three
different routes to chaos: period-doubling (dashed-dotted line), torus break-
down (diamond line), intermittency (dotted line). Fig. 3 shows that a ~ 0
for the periodic regime, and o > 0.5 for the chaotic regime. Those results
are consistent with the ones given in [27] for medium time scale which are
being used in the proposed detector.

Difference between slopes in the chaotic and periodic regime is large
enough to set safe threshold between these regimes. Therefore, we set the
threshold to C' = 3/8 = 0.375 in our simulations, which yields a robust
performance of the detector.

The window width N cannot be too small since in that case we cannot
apply the DFA analysis to the considered segment. However, wide windows
are also not suitable for the considered analysis, since they could include
samples from several consecutive chaotic and periodic segments. In our
simulations, N was set to 100 samples but similar results are obtained with
N € [75,200].
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Figure 4: Detector responses for different routes to chaos while considering the Chua’s
circuit. The dashed line represents the detection threshold.

4. Simulation study

In this section, we examine the performance of the proposed detector for
several chaotic circuits including the Chua’s oscillatory circuit, the Colpitts
oscillator and well-known Rossler, Lorenz, Duffing and Bonhoeffer-van der
Pol chaotic systems. In addition, we consider the proposed detector for the
noisy environment and compare it with several existing techniques.

4.1. Chua’s oscillatory circuit

To analyze the performance of the detector for the Chua’s oscillator,
we consider time series of intervals between extrema points derived from
v1 (t). The parameters used for simulating the oscillator are shown in Table
1. Continuously varying bifurcation parameters, the chaotic circuit switches
from a periodic to a chaotic state and vice versa. The length of sequence used
in the DFA is 1096 samples. The DFA is performed for each instant with
the analysis window of 100 samples centered around the considered instant.
The DFA is calculated for sequences of length from 5 to 25 samples. Figs.
4a-c depict the measure m (t) with comparison to threshold C' for period-
doubling, torus breakdown and intermittency routes to chaos, respectively.
The chaotic regime, indicated with values above the threshold, corresponds
well with the theoretical expectations and experimental results found in
[15], [33]-[35]. Also, all periodic windows are properly detected. Similar
results can be obtained by using other signals (e.g., v (¢) and i3 (¢)) from
the circuits.
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Figure 5: a) Colpitts oscillator with bipolar transistor. b) Equivalent circuit.

4.2. Others oscillators and chaotic systems

The performance of the proposed detector is also investigated for the
Colpitts oscillator, given in Fig.5a, [2]. The bipolar transistor, assuming
that it operates in directly active or cutoff regimes, can be modeled as a
two-segment piecewise linear voltage controlled resistor (Fig.5b). Further-
more, the detector can also be used for other chaotic systems including the
autonomous systems such as the Rossler and Lorenz chaotic systems and
nonautonomous systems such as the Duffing oscillator and forced Bonhoef-
fer -van der Pol oscillator. Table 2 summarizes the equations and parameters
used for the simulations of the aforementioned systems.

The results of simulations for these four systems can be seen in Fig.
6. Chaotic regions (above the threshold) and periodic regions (below the
threshold) detected by the proposed detector correspond well to the theo-
retical expectations, [2], [15], [36]-[41].

4.8. Noise influence

The main advantage of the proposed technique is its robustness to noise,
since the previously proposed techniques based on the time-frequency rep-
resentations are able to distinguish the chaos from noise only for small-to-
moderate levels of the additive noise. In order to analyze the influence of
the additive noise, we add the Gaussian noise with a varying variance. The

11



Equations Fixed Varying
parameters | parameter
Colpitts oscillator
C’ldﬂdtﬂ =i — I¢o C1 = 54nF, Linearly varying
Cs d”ﬁE = _VE}E%;LZBE —ip —Ip | C2 = 54nF, R;, from 679 to
Ldé_tL — VCC —voE +vBE — ,L'L L = 985MH, 5Q.
Iy _ | BRee =
0 ve < Vru 400€,
{ UB?%;]‘\/TTH ver > Vg Veg = —5V,
Ic = fBrlp Yoo =5V,
Bp = 255,
Ron =
10092, Vg =
0.75V.
Rossler chaotic system
‘fi—f =—-y—2z a=b=0.2 ¢ increases from 2
% =T +ay to 5.7.
% =b+z(x—c)
Lorenz chaotic system
’fl—f = —0xr + 0y o=10 r increases in
%:—g;z+rx—y b:8/3 range
%:xy—bz 10 < r < 110.
Duffing oscillator
fl—f =y 6=0.5 v decreases from
%:x—x?’—éy—i-'ycos(wt) 7 =088 toy =
0.7.
Bonhoeffer-van der Pol os-
cillator
dr — 7 + x—; —y+ Ajcos(t) a=0.7 A;  linearly in-
% =c(x+a—by) b=0.8 creases from
c=0.1 Al = 0 to
A} =0.78
and after that
decreases
toward initial
value.
12

Table 2: Parameters of chaotic systems.
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Figure 6: Detector responses for other chaotic systems. Detection threshold-dashed line.
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SNR is evaluated as [42]:

Jol£ (@) — F@)]*dt
Jlv@®)Pdt

where f(t) is the signal mean value in the short interval around considered
instant (in our case, it is 100 samples wide interval):

_ t+T/2
o=z, (@ (13)

SNR = 10logy,

(12)

while v (t) is additive noise. Due to the presence of noise, additional lo-
cal extreme values appear and the sequence consisting of intervals between
extrema points significantly differ from those obtained in a noise-free case.
Therefore, we use a lowpass filter (cutoff frequency is f. = fmff", where
fmax = %, with sampling rate T') to remove high frequency components
associated with noise.

To analyze the proposed detector, we compare its performance with the
detector proposed in [15] for SNR values in the range of [0,20]dB. The pa-
rameters shown in Table 1 are used for period-doubling route to chaos. The
accuracy of the proposed detector is tested using the Monte Carlo simula-
tion. Each resulting value is obtained using 100 trials. A detection error is
defined as the percentage of the samples from the periodic regime missclas-
sified as chaotic. This definition stems from the fact that some instants of
the periodic regime for a noisy signal could be recognized to belong to the
chaotic region, while the opposite is rarely the case. In other words, noise
can push measures for periodic regime above the threshold due to similarity
between chaos and noise. The proposed detector gives quite accurate results
with less than 17% missclasified samples for the considered SNR range. It is
slightly worse than detector from [15] for high SNR (SNR>14dB) while it is
significantly better for SNR<10dB. In this way the range of the SNR values
for which the proposed algorithm works accurately is significantly extended
comparing to the existing techniques. This is the main purpose of the pro-
posed technique, since distinguishing between chaos and noise influence is
a major difficulty in this area. The proposed detector is less accurate than
[15] only for samples close to the chaotic region. The scaling exponent is
calculated based on the samples from both chaotic and periodic regimes,
which reduces the accuracy of the estimator. However, this issue is beyond
the scope of the current manuscript. Note that similar results are obtained
for other routes to chaos and other chaotic circuits.

14
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Figure 7: Percentage of detector error with proposed algorithm and with algorithm from
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4.4. Comparison with permutation entropy

Next, we compare the proposed technique with the permutation entropy
approach (e.g., [14]) for the Lorenz chaotic system with bifurcation para-
meter r varying from 28 to 268. The results are shown in Fig. 8. The
proposed detector is capable of differentiating between chaotic and periodic
regimes as shown in Fig. 8c. However, to set up the threshold or procedure
for distinguishing between the chaotic and periodic regimes for the permu-
tation entropy based detector can be a challenging task as depicted in Fig.
8b. In addition, the proposed detector is significantly more robust to noise
in comparison to the permutation entropy. Namely, there are no significant
dynamic variations in the permutation entropy at SNR = 15dB (these vari-
ations should indicate changes in the system regime), while the proposed
estimator still works accurately (see Fig. 7).

5. Conclusion

In this paper, the scaling exponent-based chaotic regime detector for
signals from oscillatory circuits was proposed. The detector was developed
using the scaling analysis of extrema point intervals time series. The pro-
posed technique has been tested for three the most common routes to chaos:

15
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period-doubling, torus breakdown and intermittency. Also, this technique
was successfully applied in different autonomous and nonautonomous chaotic
systems. A numerical analysis indicated that the proposed algorithm was
very accurate and robust to noise influence in comparison to other existing
techniques.
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